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Abstract

Purpose – The aim of this work is to study numerically and analytically flow and heat transfer
characteristics and multiplicity of steady states for natural convection in a horizontal rectangular
cavity, filled with non-Newtonian power-law fluids and heated from all sides.

Design/methodology/approach – The governing equations are discretised by using the well
known second-order central finite difference method and integrated by combining the ADI and PSOR
techniques. The analytical approach is based on the parallel flow assumption.

Findings – Natural and anti-natural flows existence is proved when the Rayleigh number
exceeds a critical value and the side lateral heating intensity values is chosen inside a specific
range. The analytical results are found to agree well with those obtained numerically. The fluid
flow and the heat transfer are found to be rather sensitive to the non-Newtonian power-law
behaviour.

Research limitations/implications – The obtained results are limited to non-Newtonian
power-law fluids and cannot be extended to fluids having other behaviours.

Practical implications – The problem is implied in some industrial thermal processes.

Originality/value – Existence of multiple steady state-solutions in the range of the side lateral
heating intensity values ensuring, that is reduced by the shear-thickening behaviour and extended by
the shear-thinning one for a given value of Rayleigh number.
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Nomenclature
A ¼ aspect ratio of the enclosure, equation

(10)
a ¼ heat flux ratio

C ¼ dimensionless temperature gradient
in x-direction

g ¼ acceleration due to gravity
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H0 ¼ height of the enclosure
k ¼ consistency index for a power-law

fluid at the reference temperature
k0 ¼ parameter of Ellis model, equation (36)
k1 ¼ parameter of Ellis model, equation (36)
L0 ¼ length of the enclosure
m ¼ parameter of Ellis model, equation (36)
n ¼ flow behaviour index for a power-law

fluid at the reference temperature
Nuh ¼ Nusselt number corresponding to the

horizontal local heat transfer;
equations (11), (12), (31) and (35)

Nuh ¼ Nusselt number corresponding to the
horizontal overall heat transfer,
equations (13), (31) and (35)

Nuv ¼ Nusselt number corresponding to the
vertical local heat transfer, equations
(14) and (32)

Nuv ¼ Nusselt number corresponding to the
vertical overall heat transfer,
equation (15)

Pr ¼ generalised Prandtl number, equation
(10)

q0 ¼ constant heat flux per unit area
Ra ¼ generalised Rayleigh number,

equation (10)
T ¼ dimensionless temperature,

ðT 0 2 T 0
cÞ=DT

*

T 0
c ¼ reference temperature

DT * ¼ characteristic difference of
temperature, q0H0/l

(u, v) ¼ dimensionless axial and vertical
velocities, (u0,v0)/(a/H0)

(x, y) ¼ dimensionless axial and vertical
coordinates, (x0,y0)/H0

Greek symbols

a ¼ thermal diffusivity at the reference
temperature

b ¼ thermal expansion coefficient at the
reference temperature

_g0ij ¼ shear rate tensor
_�g0 ¼ generalised shear rate
l ¼ thermal conductivity at the reference

temperature
m ¼ dynamic viscosity for a Newtonian

fluid at the reference temperature
ma ¼ dimensionless apparent viscosity for

a non-Newtonian power-law fluid,
equation (6)

V ¼ dimensionless vorticity, V0/(a/H02)
c ¼ dimensionless stream function, c0/a
r ¼ density of fluid at the reference

temperature
t0ij ¼ viscous stress tensor

Superscript
0 ¼ dimensional variables

Subscripts
a ¼ threshold value related to the onset of

anti-natural flow
c ¼ critical value or value relative to the

centre of the enclosure
(x,y) ¼ (A/2,1/2)

max ¼ maximum value
1 ¼ asymptotic value

Mathematical symbols
: ¼ dyadic product

Introduction
Many fluids encountered in industrial applications, such as paper making, drilling of
petroleum products, slurry transporting, and processing of food and polymers to
name a few, exhibit a viscous non-Newtonian behaviour. They have non-linear shear
stress – shear rate characteristics that, depending upon their chemistry, can be
shear-thinning or shear-thickening. Rheologically, there is a class of purely viscous
time-independent fluids that can be modelled by the power-law Ostwald-de Waele
constitutive relationship (Bird et al., 1987):

t 0
ij ¼ 2m0

a _g
0
ij ¼ 2kð _�g 0Þn21 _g 0

ij ð1Þ

where it is evident that the apparent viscosity, m0
a; is a function of the generalised shear

rate, _�g 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 _g 0

ij : _g 0
ij

q
: For shear-thinning or pseudo-plastic fluids, the flow behaviour

index, n, varies in the range 0 , n , 1, while for shear-thickening or dilatant ones
n . 1. In this model, n ¼ 1 corresponds to the case of a Newtonian fluid and the
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consistency index, k, stands for the dynamic viscosity, m. Note that the rheological
behaviour of many substances can be adequately represented by the Ostwald-de Wale
model for relatively large range of shear rates. In addition, this model presents also the
advantage of being simple and mathematically tractable compared to the Ellis model
since the latter requires at least one more viscosity term, making the determination of
the shear stress-shear rate relationship much more difficult.

According to Jaluria (2003), the non-Newtonian fluids are invariably subject to a
heat exchange process during either their preparation or transformation to the final
product. Then, the thermal processing is often accomplished with the viscous
non-Newtonian media and, in some cases, promotes the fluid motion under thermal
buoyancy effects inside closed containers. The study conducted by Ozoe and Churchill
(1972) counts among the earliest numerical modelling of natural convection in confined
non-Newtonian media. The authors determined the threshold of Rayleigh-Bénard
convection onset in Ostwald-de Waele power-law fluids. However, their results, related
to the critical Rayleigh number, were overestimated experimentally and theoretically
by Tien et al. (1969) while studying thermal instability of a horizontal layer filled with
non-Newtonian power-law fluids and heated from below. After nearly two decades,
Turki (1990) investigated numerically a problem of natural convection in a closed
rectangular cavity, differentially heated and filled with non-Newtonian fluids. The
results obtained were found to be in more or less satisfactory agreement with those
obtained experimentally one year before by Cardon (1989). According to Turki’s
results, the non-Newtonian behaviour may affect considerably the flow structure and
heat transfer. More recently, Ohta et al. (2002) studied, by a direct numerical analysis,
natural convection heat transfer problem of pseudo-plastic fluids confined in a square
cavity heated from below and cooled from the top. It was found that the shear-thinning
effect leads to an important increase of the heat transfer exchange, and that the locally
important change in the viscosity is at the origin of a complicated flow structure
observed when the flow behaviour index decreases and the Rayleigh number increases.
Afterwards, thermal convection of micro-emulsion slurry, which exhibits a
non-Newtonian power-law behaviour, was studied numerically and experimentally
by Inaba et al. (2003a, b) in rectangular enclosures heated from below and cooled from
above with constant but different temperatures. These authors observed that the
shear-thinning character leads to an enhancement of the convection heat transfer.

Even though the above studies have considered heating and cooling through two
opposite sides while maintaining the remaining other sides insulated, nearly adiabatic
conditions are not easy to satisfy in practice. The resulting flow and temperature fields
may be quite different from those induced by horizontal or vertical temperature
gradients solely. The problem of natural convection in fluid-filled cavities submitted to
cross heating was recently studied by Prud’homme and Bougherara (2001) and
Prud’homme et al. (2003a, b) in tall vertical and shallow horizontal cavities,
respectively. A linear stability analysis of the parallel basic flow was used to predict
the critical conditions for the development of disturbances.

As the fluid rheology and thermal boundary conditions may play a crucial role in
thermal processing, the present work is devoted to study the natural convection heat
transfer problem within a two-dimensional horizontal rectangular enclosure filled
with a non-Newtonian fluid. The present work was motivated by the fact that the
studies dealing with natural convection in closed non-Newtonian fluid-filled
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rectangular cavities have received rather sparse attention compared to those related to
Newtonian case.

A numerical solution of the full governing equations is obtained for wide ranges of
the controlling parameters. In the limit of a shallow cavity, the governing equations
can be simplified by using the parallel flow approximation that makes possible their
analytical resolution. Fluid flow, temperature fields and heat transfer results are
presented for different values of the Rayleigh number, Ra, the power-law index, n, and
the constant, a, representing the ratio between the heat flux imposed on the vertical
walls and that imposed on the horizontal ones. The competition between the horizontal
and vertical imposed heat fluxes is studied and the results presented may be useful to a
better understanding of flow and heat transfer characteristics of non-Newtonian fluids
submitted to cross gradients of heat.

Problem formulation
A schematic of the studied configuration is shown in Figure 1. The rectangular
enclosure, filled with a fluid whose non-Newtonian rheological behaviour is suitable to
be described by equation (1), is of height H0 and length L0 and all its boundaries are
rigid, impermeable and subject to constant heat fluxes. The main assumptions made
here are those commonly used, i.e. the fluid is incompressible and its physical
properties are considered independent of temperature except the density in the
buoyancy term which obeys the Boussinesq approximation (Gray and Giorgini, 1976)
and the viscous dissipation of fluid is negligible. In addition, it is admitted that the flow
is laminar and the third dimension of the cavity is large enough so that the problem can
be considered two-dimensional. Then, the dimensionless governing equations, written
in terms of vorticity, V temperature, T, and stream function, c, are the following:

›V

›t
þ

›ðuVÞ

›x
þ

›ðvVÞ

›y
¼ Pr ma

›2V

›x 2
þ

›2V

›y 2

� �
þ 2

›ma

›x

›V

›x
þ

›ma

›y

›V

›y

� �� �
þ SV ð2Þ

›T

›t
þ

›ðuTÞ

›x
þ

›ðvTÞ

›y
¼

›2T

›x 2
þ

›2T

›y 2
ð3Þ

and

›2c

›x 2
þ

›2c

›y 2
¼ 2V ð4Þ

where

Figure 1.
Sketch of the studied
geometry and co-ordinates
system
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u ¼
›c

›y
; v ¼ 2

›c

›x
; ð5Þ

ma ¼ 2
›u

›x

� �2

þ
›v

›y

� �2
" #

þ
›u

›y
þ

›v

›x

� �2
" #n21

2

ð6Þ

and

SV ¼ Pr
›2ma

›x 2
2

›2ma

›y 2

� �
›u

›y
þ

›v

›x

� �
2 2

›2ma

›x›y

›u

›x
2

›v

›y

� �� �
þ Pr Ra

›T

›x
ð7Þ

The dimensionless variables are obtained by using the characteristic scales H0 H02/a,
a/H0 a/H02, q0H0/l and a corresponding to length, time, velocity, vorticity,
characteristic temperature and stream function, respectively.

To complete the problem formulation, the following non-dimensional appropriate
boundary conditions are used:

u ¼ v ¼ c ¼
›T

›x
þ a ¼ 0 for x ¼ 0 and A ð8Þ

u ¼ v ¼ c ¼
›T

›y
þ 1 ¼ 0 for y ¼ 0 and 1 ð9Þ

In addition to the heat flux ratio, a, and the power-law index, n, the present problem is
governed by three dimensionless other parameters, namely the aspect ratio of the
enclosure, A, the generalised Prandtl number, Pr, and the generalised Rayleigh
number, Ra, which are, respectively, defined as follows:

A ¼
L0

H 0
; Pr ¼

ðk=rÞH 0222n

a 22n
and Ra ¼

gbH 02nþ2q0

ðk=rÞanl
ð10Þ

Numerical methodology
The two-dimensional governing equations are solved by using the well-known second
order central finite difference method with a regular mesh size. The integration of the
vorticity and energy equations (2) and (3), is performed with the alternating-direction
implicit method (ADI). This method, frequently used for Newtonian fluids, was
successfully extended to non-Newtonian power-law fluids by Ozoe and Churchill
(1972), Turki (1990) and Amari et al. (1994). To satisfy the conservation of mass, the
Poisson equation (equation (3)) was solved by a point successive over-relaxation
method (PSOR) with an optimum relaxation factor calculated by the Franckel formula
(Roache, 1982). The convergence criterion

P
i;jjc

kþ1
i;j 2 ck

i;jj , 1024
P

i;jjc
kþ1
i;j j was

adopted, where ck
i;j is the value of the stream function at the kth iteration level. The

choice of the mesh grids was based on trial calculations to optimise the computation
time and the solutions accuracy. Hence, it is seen from Table I that, for A ¼ 12, uniform
grids of 241 £ 41 are sufficient to model accurately the fluid flow and temperature
distribution in the cavity. The time step size was varied from 1026 to 1024 depending
on the values of the governing parameters.
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Among the various formulae proposed in the literature to evaluate the vorticity on the
rigid boundaries, we use here the relation of Woods its accuracy (Roache, 1982).

With the Ostwald power-law model, for 0 , n , 1, the dimensionless viscosity
given by equation (6), tends towards infinity at the immediate vicinity of the corners of
the cavity where the velocity gradients are very small which makes impossible direct
numerical computations. This numerical difficulty is surpassed by using average
values for the corner viscosity which renders the computations possible and stable.

The horizontal local heat transfer through the fluid-filled cavity can be expressed in
terms of the local Nusselt number, defined as:

Nuhð yÞ ¼
aq0

ðlDT 0
h=L0Þ

¼
aA

DTh
¼

a

ðDTh=AÞ
ð11Þ

where DTh ¼ Tð0; yÞ2 TðA; yÞ is the side to side horizontal dimensionless local
temperature difference. However, this definition is notoriously inaccurate owing to the
uncertainty of the temperature values at the two vertical walls due to edge effects.
Instead, it is judged preferable to calculate Nuh on the basis of a difference temperature
between two vertical sections, far from the end sides, to improve the accuracy. Thus,
by analogy with equation (11), and considering two infinitesimally close sections, Nuh

can be defined by:

Nuhð yÞ ¼ a
dx!0
lim

dx

dT
¼ a

dx!0
lim

1

ðdT=dxÞ
¼

2a

ð›T=›xÞx¼A=2

ð12Þ

where dx is the distance between two symmetrical sections with respect to the central
one (section at x ¼ A/2). A confirmation of the obviousness of the above remarks is
corroborated by the results presented in Table II where the values of the average
horizontal Nusselt number are calculated at different locations as follows:

Nuh ¼

Z 1

0

Nuhð yÞdy ð13Þ

Grids (241 £ 33)
n cmax Nuv Nuh

0.6 211.869 3.545 0.812
1.0 23.595 2.546 0.303
1.4 21.471 1.519 0.209
Grids (201 £ 41) (241 £ 41) (281 £ 41)
n cmax Nuv Nuh cmax Nuv Nuh cmax Nuv Nuh

0.6 210.843 3.534 0.840 210.848 3.541 0.839 210.849 3.541 0.839
1.0 23.604 2.549 0.300 23.601 2.542 0.301 23.598 2.537 0.303
1.4 21.481 1.507 0.215 21.493 1.515 0.217 21.475 1.496 0.217
Grids (241 £ 49)
n cmax Nuv Nuh

0.6 210.828 3.525 0.815
1.0 23.600 2.532 0.301
1.4 21.466 1.489 0.217

Table I.
Grid size tests conducted
for a ¼ 0:1; A ¼ 12;
Ra ¼ 4; 000 and various
values of n (case of
natural flow)
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For the vertical local heat transfer, the following expression is used to evaluate the
local Nusselt number:

NuvðxÞ ¼
q0

ðlDT 0
v=H 0Þ

¼
1

DTv
ð14Þ

where DTv ¼ T(x,0) 2 T(x,1) is a vertical dimensionless local temperature difference.
An integration of equation (14) along the horizontal walls leads to the mean vertical

Nusselt number:

Nuv ¼
1

A

Z A

0

NuvðxÞdx ð15Þ

expressing the vertical overall heat transfer rate across the cavity.
Note that when the flow is parallel, Nuh and Nuh, given, respectively, by equations

(12) and (14), remain unchanged in the central part of the enclosure.
An additional check of the results accuracy was performed by systematically

verifying the energy balance for the system at each numerical code running. Thus, the
overall quantity of heat released to the system at x ¼ 0 and y ¼ 0, was compared to the
quantity of heat leaving the latter through the remaining boundaries. For the results
reported here, the energy balance was satisfied within 2 per cent as a maximum
difference.

Typical streamlines and isotherms, for natural (left) and anti-natural (right)
solutions, are shown in Figure 2 for A ¼ 12, Ra ¼ 4,000, a ¼ 0.1 and different values of
n. In the case of a ¼ 0 (absence of side heating), the unicellular flow can rotate either
clockwise or counter-clockwise with the same intensity. However, the side heating, as
imposed in Figure 1, promotes the clockwise flow and reduces the intensity of the
counter-clockwise flow. The terminology “natural” and “anti-natural” is introduced to
simply indicate whether the lateral heating is favourable to the flow rotating in one
direction “natural” or not “anti-natural”. As it can be seen, the flow is parallel to the
horizontal boundaries and the temperature is linearly stratified in the horizontal
direction for all the considered values of n. The analytical solution, developed in the
next section, is based on these observations to allow appropriate simplifications.

Approximate analytical solution
On the basis of the results shown in Figure 2, the following simplifications are used:

uðx; yÞ ¼ uð yÞ; vðx; yÞ ¼ 0; cðx; yÞ ¼ cð yÞ and Tðx; yÞ ¼ Cðx2A=2Þ þ uð yÞ ð16Þ

where C is the unknown but constant dimensionless horizontal temperature gradient in
the core region. Using these approximations, the simplified resulting non-dimensional
governing equations are:

Nuh

n dx ¼ A dx ¼ 3A=4 dx ¼ 2A=3 dx ¼ A=2 dx ¼ A=3 dx ! 0

0.6 0.770 0.838 0.839 0.839 0.840 0.839
1.0 0.299 0.301 0.301 0.301 0.301 0.301
1.4 0.221 0.216 0.216 0.216 0.217 0.217

Table II.
Natural flow mean

Nusselt number, Nuh;
calculated at different
locations for a ¼ 0:1;

A ¼ 12; Ra ¼ 4; 000 and
various values of n
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d2

dy 2

du

dy

����
����
n21

du

dy

" #
¼ CRa ð17Þ

Cu ¼
›2T

›y 2
¼

d2u

dy 2
ð18Þ

with the following boundary conditions:

u ¼
du

dy
þ 1 ¼ 0 for y ¼ 0 and 1 ð19Þ

and the return flow condition: Z 1

0

uð yÞdy ¼ 0 ð20Þ

Figure 2.
Natural (left) and
anti-natural (right)
streamlines (top) and
corresponding isotherms
(bottom) for a ¼ 0:1; A ¼
12; Ra ¼ 4000 and various
values of n: (a) n ¼ 0:6; (b)
n ¼ 1:0 and (c) n ¼ 1:4
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In the past, the above concept has been successfully used by many authors in the cases
of Newtonian (Sen et al., 1988, Kalla et al., 1999) and non-Newtonian (Amari et al., 1994)
fluids.

The integration of equations (17) and (18), associated to the conditions (19) and (20),
leads to velocity, temperature and heat transfer rate expressions. Owing to the nature
of the governing equations, the operation of integration is complicated and requires a
special numerical treatment. Indeed, the non-linearity of the behaviour and the change
of the velocity gradient sign due to the return flow, imposes that the velocity
expressions are different depending on whether 0 # y # y0, y0 # y # y1 or y1 # y # 1,
where y0 and y1 ( y1 ¼ 1 2 y0, because of the centro-symmetry of the core flow) are
the vertical coordinate values for which the vertical velocity gradient is zero. They
are derived from equation (20) which is numerically solved by using a combination of
the Regula-Falsi and Wegstein iteration methods (Gourdin and Boumahrat, 1989)
and the Gauss-Legendre integration method (Sibony and Mardon, 1982).
To simplify the velocity and temperature expressions, we introduce the function
f ð yÞ ¼ ð y 2 2 y þ y0y1Þ=2: Thus, for 0 # y # y0, one obtains:

uð yÞ ¼ C 1=nRa1=n

Z y

0

f ð yÞ
� �1=n

dy

� �
ð21Þ

uð yÞ ¼ C 1þ1=nRa 1=n

Z y

0

Z y

0

Z y

0

f ð yÞ
� �1=n

dy

� �
dy

� �
dy

� �
2 y þ uð0Þ ð22Þ

For y0 # y # y1, the obtained expressions are:

uð yÞ ¼ C 1=nRa 1=n

Z y0

0

f ð yÞ
� �1=n

dy þ

Z y0

y

2f ð yÞ
� �1=n

dy

� �
ð23Þ

uð yÞ ¼ C 1þ1=nRa 1=n ð y 2 y0Þ
2

2

Z y0

0

f ð yÞ
� �1=n

dy

�

þ

Z y

y0

Z y

y0

Z y0

y

2f ð yÞ
� �1=n

dy

� �
dy

� �
dyþð y 2 y0Þ

Z y0

0

Z y

0

f ð yÞ
� �1=n

dy

� �
dy

þ

Z y0

0

Z y

0

Z y

0

f ð yÞ
� �1=n

dy

� �
dy

� �
dy

�
2 y þ uð0Þ

ð24Þ

while for y1 # y # 1 the expressions are as follows:

uð yÞ ¼ C 1=nRa 1=n

Z y0

0

½f ð yÞ�1=ndy þ

Z y0

y1

½2f ð yÞ�1=ndy þ

Z y

y1

½f ð yÞ�1=ndy

� �
ð25Þ
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uð yÞ¼C 1þ1=nRa1=n 1

2
ð y2y1Þð yþy122Þ

Z y0

0

½f ð yÞ�1=ndyþ

Z y0

y1

2f ð yÞ
� �1=n

dy

� ��

þ

Z y

y1

Z y

1

Z y

y1

½f ð yÞ�1=ndy

� �
dy

� �
dyþ

Z y1

y0

Z y

y0

Z y0

y

½2f ð yÞ�1=ndy

� �
dy

� �
dy

þ
1

2
ð y12y0Þ

2

Z y0

0

½f ð yÞ�1=ndyþð y12y0Þ

Z y0

0

Z y

0

½f ð yÞ�1=ndy

� �
dy

þ

Z y0

0

Z y

0

Z y

0

½f ð yÞ�1=ndy

� �
dy

� �
dy

�
2yþuð0Þ

ð26Þ

Taking into account the expressions of u( y) and equation (5), the stream function at the
centre of the enclosure can be expressed by:

cc ¼ cðA=2; 1=2Þ

¼ C 1=nRa1=n ð1=2 2 y0Þ

Z y0

0

½f ð yÞ�1=ndy

�

þ

Z y0

0

Z y

0

½f yð Þ�1=ndy

� �
dyþ

Z 1=2

y0

Z y0

y

½2f yð Þ�1=ndy

� �
dy

# ð27Þ

The expression of the constant u(0), which is determined by exploiting the
centro-symmetry of the core temperature field, is as follows:

uð0Þ ¼ 1=2 2 C 1þ1=nRa 1=n ð1=2 2 y0Þ
2

2

Z y0

0

½f ð yÞ�1=ndy

�

þ

Z 1=2

y0

Z y

y0

Z y0

y

½2f ð yÞ�1=ndy

� �
dy

� �
dy

þð1=2 2 y0Þ

Z y0

0

Z y

0

½f ð yÞ�1=ndy

� �
dy

þ

Z y0

0

Z y

0

Z y

0

½f ð yÞ�1=ndy

� �
dy

� �
dy

�
¼ 1=2 2 C 1þ1=nRa 1=nGðnÞ

ð28Þ

On the other hand, the value of the unknown constant C, which characterises the axial
temperature gradient, is obtained from the thermal boundary conditions imposed on
the end walls. Because of the turning flow at the end regions of the fluid layer, the
boundary conditions in the x-direction (equation 8), cannot be exactly satisfied by
the parallel flow approximation. According to Bejan (1983), the constant C could be
calculated by matching the core solution (equation, 16) to the integral solution for the
one of the two end regions (integration of equation (3), together with the boundary
conditions (8) and (9), by considering the arbitrary control volume of Figure 1). Taking
into account equation (20), this yields the following equation:
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C þ a ¼

Z 1

0

uð yÞuð yÞdy ð29Þ

By substituting the expressions of u( y) and u( y) into equation (29), this becomes:

C þ a ¼ AnRa2=nC 1þ2=n þ BnRa1=nC 1=n ð30Þ

The coefficients An and Bn, which depend only on n, are calculated by using the
Gauss-Legendre integration method and their values are given with those of y0 in
Table III.

To determine the value of C corresponding to given values of n, Ra and a, equation
(30) was firstly solved by the Regula-Falsi iteration method and, in order to improve
the accuracy, the resulting solution was used as an initial estimation to solve the same
equation with the Wegstein iteration method which is of high order than the former.

Using equations (12)-(15) and the centro-symmetrical nature of the solution, the
horizontal and vertical Nusselt numbers are constant in the parallel flow region and
can be, respectively, expressed as:

Nuh ¼ 2
a

c
¼ Nuh ð31Þ

Nuv ¼ 1=2uð0Þ ð32Þ

Two limiting cases are of particular importance:

(1) This case is that of pure conduction regime (Ra ¼ 0), for which equations (28)
and (30) lead, respectively, to u(0) ¼ 1/2 and C ¼ ð›T=›xÞx¼0;A ¼ 2a: Then,
when using equations (31) and (32), one obtains Nuh ¼ Nuv ¼ 1.

(2) This case corresponds to the limit u(0) ! 0 which leads to Nuv ! 1 when in
equation (28), C ! C1 such us:

C1 ¼
1

½2Ra 1=nGðnÞ�n=1þn
ð33Þ

According to equation (30), an asymptotic value of a arises. It is given by:

a1 ¼ AnRa 2=nC1þ2=n
1 þ BnRa 1=nC1=n

1 2 C1 ð34Þ

and the corresponding horizontal Nusselt number is expressed as follows:

Nuh;1 ¼ Nuh;1 ¼ 1 2 AnRa 2=nC2=n
1 2 BnRa 1=nC21þ1=n

1 ð35Þ

N y0 An Bn

0.6 0.199 20.485 £ 1027 0.186 £ 1023

1.0 0.211 20.276 £ 1025 0.139 £ 1022

1.4 0.219 20.160 £ 1024 0.333 £ 1022

Table III.
Dependence of y0; An and

Bn on n
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Results and discussion
Numerical results for laminar natural convection flow and heat transfer of viscous
power-law fluids are presented in the following subsections. The parameters a and Ra,
were varied in wide ranges for shear-thinning (n ¼ 0.6), Newtonian (n ¼ 1) and
shear-thickening (n ¼ 1.4) fluids. On the basis of previous studies, conducted by Ng
and Hartnett (1986), Mamou et al. (2001) and, more recently, by Inaba et al. (2003a, b),
the solutions were found to be rather insensible to the Prandtl number
variations, provided that this parameter is large enough as it is the case for the
non-Newtonian fluids and also for a large category of fluids having a Newtonian
behaviour. Therefore, Pr is not considered as an influencing parameter in this study.
This finding is also confirmed by the present analytical solution which, in its range of
validity, is independent of Pr. On the other hand, thermal boundary conditions
corresponding to uniform imposed heating fluxes lead to flow characteristics
independent of the aspect ratio, A, when this parameter is large enough. The
approximate analytical solution, developed in the preceding section, on the basis of the
parallel flow assumption, is thus valid asymptotically in the limit of a shallow cavity
(A q 1). To determine the smallest value of A leading to results reasonably close to
those of large aspect ratio approximation, various numerical tests were performed by
progressively increasing this parameter from its lower value corresponding to a square
cavity (A ¼ 1). It is to mention that natural and anti-natural steady solutions were
obtained both analytically and numerically. The corresponding natural/(anti-natural)
flow is clockwise/(counter-clockwise) for a . 0 and counter-clockwise/(clockwise) for
a , 0.

Let us note that the results, presented and discussed in this paper, can interest some
manufacturing processes, involving non-Newtonian shear-thinning or
shear-thickening fluids, where thermal buoyancy induced effects play a crucial role.

Validation of the approximate analytical solution
For a ¼ 0.1, A ¼ 12, Ra ¼ 4,000 and different values of n, comparison between
numerical (full and empty circles) and analytical (solid lines) results, shown in Figure 3,
shows an excellent agreement in terms of vertical distributions of velocity and
temperature at mid-length of the cavity. In addition, computed and calculated values of
cc, Nuv and Nuh, shown in Figures 4-6, respectively, for n ¼ 0.6, 1.0 and 1.4, agree also
well for a wide range of Ra and various values of a. Moreover, these results confirm
that the value A ¼ 12 satisfies the asymptotic limit of a shallow cavity for the present
problem.

Effect of the flow behaviour index
A close inspection of the streamlines shown in Figure 2, shows that the unicellular flow
structure, which is characterised by a parallel aspect in the central part of the
enclosure, is not qualitatively affected by the rheological behaviour. However,
important quantitative changes are observed in the corresponding values of the flow
intensity, cc, which decreases in absolute value from 10.676 to 1.391 (for natural flow)
and from 10.464 to 1.025 (for anti-natural flow) when n passes from 0.6 to 1.4. This
means that an increase of n slows down the fluid circulation within the cavity and such
a tendency is well confirmed by the velocity profiles shown in Figure 3(a). The
isotherms shown in Figure 2 are qualitatively more sensitive to the rheological

HFF
16,7

790



behaviour of the fluid than the streamlines. In fact, they show more important
distortions for n ¼ 0.6 since the most intense flow is generated by this value of n. The
distortions tend to disappear for n ¼ 1.4, and such behaviour is well corroborated by
the temperature profiles shown in Figure 3(b). Accordingly, the mean Nusselt numbers,
ðNuv;NuhÞ; drop from (3.541, 0.839) to (1.515, 0.217) for the natural flow and from
(3.211, 1.219) to (0.846, 0.347) for the anti-natural one when n is increased from 0.6 to
1.4. Such results confirm the reducing role of the dilatant behaviour with regard to the
convection heat transfer and agree with similar observations reported in the past by
Amari et al. (1994) while investigating natural convection in a horizontal rectangular
porous layer saturated with non-Newtonian fluids.

Figure 3.
Natural and anti-natural

horizontal velocity (a) and
temperature; (b) profiles

along the vertical
coordinate for a ¼ 0:1;

A ¼ 12; Ra ¼ 4; 000 and
different values of n

Multiple steady
state solutions

791



Figure 4.
(a) Flow intensity, cc; (b)
vertical Nusselt number,
Nuv and (c) horizontal
Nusselt number, Nuh;
versus Ra, for various
values of a, A ¼ 12 and
n ¼ 0:6

HFF
16,7

792



Effect of the Rayleigh number
In Figures 4(a)-(c)-6(a)-(c) are shown the evolutions of the flow intensity, cc(a), the
vertical, Nuv(b), and the horizontal, Nuh(c), Nusselt numbers versus Ra, for n ¼ 0.6
(Figures 4(a)-(c)), n ¼ 1.0 (Figures 5(a)-(c)) and n ¼ 1.4 (Figures 6(a)-(c)) and various
values of a. For a ¼ 0, the onset of motion occurs at Ra ¼ Rac and the rest state,
characterised by cc ¼ 0, Nuv ¼ 1 and Nuh ¼ 0, becomes unstable. Hence, the
stationary convection starts from the rest state at Rac and the unicellular
corresponding flow is either clockwise or counter-clockwise rotating. Let us specify
that Rac can be determined analytically for the Newtonian case, but for complex fluids,
this parameter is estimated numerically since equation (30) presents a singular
character when the constant axial temperature gradient C tends towards zero which is
the case in pure conductive regime. In fact, for this regime, the power-law model is not
valid; it does not consider the Newtonian behaviour of the fluid for the very low shear
rates. For a – 0, three roots are theoretically possible when Ra is large enough. The
curves with only one branch correspond to “natural” circulation (flow ascending at
the level of the lateral heating surface) and the corresponding numerical values are
represented by full circles, whereas the curves with two branches are related to
“anti-natural” circulation (flow descending at the level of the lateral heating surface),
starting beyond a threshold value of Ra, denoted Raa (Rac . Rac), which depends on a
for a given value of n. For this type of flow, the portions of curves indicated by dashed
lines were not accessible numerically, for all the explored values of a, n and Ra, and
this, despite the numerous tests conducted with favourable initial conditions. In all
previous studies using the parallel flow approximation (Sen et al. (1988), Kalla et al.
(1999) and many other authors), it was not possible to confirm numerically the results
of the unstable branch, and this, independently of the initial conditions used to initiate
the numerical runs. The portions of curves with continuous lines corresponding to
anti-natural flow were validated numerically (open circles) for jaj , 0:4 (with a – 0)
and Ra varying in the ranges 304 , Ra # 104 (for n ¼ 0.6), 720 , Ra # 4.104 (for
n ¼ 1.0) and 810 , Ra # 105 (for n ¼ 1.4).

The same figures show also different evolutions of the quantities cc, Nuv and Nuh

with Ra. In fact, for the natural flow ccj j and Nuv are increasing functions of Ra
whereas Nuh does not follow the same evolution since it decreases from the unit to
reach a minimum before increasing afterwards. For the anti-natural flow, the stable
branch, of each curve, corresponds to an increase of cc, Nuv and Nuh with Ra while a
slight decrease/(increase) with this parameter is observed for cc and Nuv/(Nuh) in the
case of the unstable branch. Similar tendencies in the evolution of cc and Nuv, were
reported by Kalla et al. (1999) for the case of a horizontal porous cavity saturated with a
Newtonian fluid (n ¼ 1.0) and subject to uniform heat fluxes on all sides.

These obtained results confirm the existence of multiple solutions for this kind of
problem and the validity of the parallel flow hypothesis for a wide range of Ra. They
also demonstrate clearly that Ra and n have opposite effects on fluid flow and heat
transfer characteristics. In fact, for a given n, an increase of Ra enhances convection
heat transfer whereas a decrease of n, for a given Ra, can induce a similar effect.
However, the convection is found to be more sensitive to the change of Ra for fluids
having pseudo-plastic behaviour (0 , n , 1) than for dilatant fluids (n . 1). This
explains the choice of a reduced range of Ra in Figures 4-6 while varying n from 1.4 to
0.6 to allow a clear presentation of the curves corresponding to cc, Nuv and Nuh.
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Figure 5.
(a) Flow intensity, cc;
(b) vertical Nusselt
number, Nuv and
(c) horizontal Nusselt
number, Nuh; versus Ra,
for various values of a,
A ¼ 12 and n ¼ 1:0
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Figure 6.
(a) Flow intensity, cc;

(b) vertical Nusselt
number, Nuv and

(c) horizontal Nusselt
number, Nuh; versus Ra,

for various values of a,
A ¼ 12 and n ¼ 1:4
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The results obtained with the power-law model (which was used in the present study to
characterise the non-Newtonian behaviour) are compared with those resulting from
Ellis model (Ozoe and Churchill, 1972) in Figure 7. For the latter, the apparent viscosity
varies with the generalised shear rate following the implicit relationship:

1

ma
¼ k0 þ k1 2

›u

›x

� �2

þ
›v

›y

� �2
" #

þ
›u

›y
þ

›v

›x

� �2
" #m21

mm21
a ð36Þ

A reasonable agreement between the results obtained with both models is seen in
Figure 7 what makes evident the validity of the Ostwald-De Waele model at
low convection. Equation (36), which takes into account the Newtonian behaviour at
low shear rates, was solved for ma at each grid point and time by the Newton-Raphson
method using the values of the velocity components at the previous time-step.
Otherwise the procedure of calculation was the same as that previously described for
the Ostwald-de Waele model. In the computational procedure used for the Ellis model,
the following dimensionless coefficients, given in the paper of Ozoe and Churchill
(1972) for 4 per cent CMC solution, were considered: k0 ¼ 0.636, k0 ¼ 0:636; k1 ¼ 0:644
and m ¼ 1:17: The viscosity versus the shear-stress curve for the Ellis fluid is
equivalent to that of an Ostwald-de Waele fluid with n ¼ 0:875 and k ¼ 0:2065 Pa:sn

over the range of shear-stress from 0.8 to 44 Pa. Note that the Ellis model, which is only
used for shear-thinning fluids, involves three empirical constants and provides an
implicit relationship between the rate of strain and the shear stress.

Effect of the side lateral heating intensity
To clarify the effect of the side heating intensity, a, on the thermal convection, both
numerical and analytical results of cc; Nuv; and Nuh are shown in Figures 8-10,
respectively, for n ¼ 0:6; 1:0and1:4 and various values of Ra. Recall that the change of
the sign of a changes only the sign of cc without affecting Nuv and Nuh: On the other
hand, the variations of Nuv with a present a discontinuity in the case of the “natural”
solution, since Nuv tends towards infinity when a approaches an asymptotic value a1
given by equation (34). This means that an inversion of the temperature sign occurs at
the level of the horizontal boundaries. In addition, it is seen from the figures that the
evolution of Nuh with a; in the case of the “anti-natural” solution, presents different
shapes according to the value of n: In fact, while passing from shear thickening
behaviour ðn ¼ 1:4Þ to shear thinning one ðn ¼ 0:6Þ; a spectacular evolution curiously
similar to a flower blooming is observed. Moreover, it may be observed, from the same
figures, that for a given (n, Ra) there is a critical value, jaaj; of a – 0; which is a
decreasing/(increasing) function of n/(Ra), for the existence of the anti-natural solution.
These results confirm, also, the complexity in the behaviour change when the side
heating intensity counts among the controlling parameters of the problem. Here again
the numerical solution is seen to be in good agreement with the analytical parallel flow
one.

For the evolutions of cc and Nuv with a, an analogous behaviour was observed in
the past by Kalla et al. (1999) while studying buoyancy convection in a horizontal
porous cavity saturated with a Newtonian fluid ðn ¼ 1:0Þ and submitted to uniform
heat fluxes on all sides.
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Figure 7.
(a) Flow intensity, cc;

(b) vertical Nusselt
number, Nuv and

(c) horizontal Nusselt
number, Nuh; versus Ra,

for A ¼ 12 and two values
of a. Comparison between
results obtained with the

Ostwald-De Waele
(n ¼ 0:85) and Ellis

(k0 ¼ 0:636; k1 ¼ 0:644
and m ¼ 1:17) models

Multiple steady
state solutions

797



Figure 8.
(a) Flow intensity, cc;
(b) vertical Nusselt
number, Nuv and
(c) horizontal Nusselt
number, Nuh; versus a, for
A ¼ 12; n ¼ 0:6 and
various values of Ra
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Figure 9.
(a) Flow intensity, cc;

(b) vertical Nusselt
number, Nuv; and

(c) horizontal Nusselt
number, Nuh; versus a, for

A ¼ 12; n ¼ 1:0 and
various values of Ra
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Figure 10.
(a) Flow intensity, cc;
(b) vertical Nusselt
number, Nuv; and
(c) horizontal Nusselt
number, Nuh; versus a, for
A ¼ 12; n ¼ 1:4 and
various values of Ra
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Conclusion
In this paper, the problem of steady natural convection, within a horizontal rectangular
cavity filled with non-Newtonian power-law fluids and heated from all sides, was
studied both numerically and analytically. The conjugate effect of the power-law index,
n, the Rayleigh number, Ra, and the side heating intensity, a, on the flow intensity and
heat transfer characteristics is investigated. The main results of the study are
summarised in the following points:

. Under the conditions of imposed constant heat fluxes on all boundaries, the
parallel flow structure is maintained in the core region of the enclosure provided
that the aspect ratio of the cavity is large enough.

. For a – 0; the existence of two unicellular convective motions, namely “natural
and anti-natural” flows, was proved when Ra exceeds a critical value and the
value of a is chosen inside a specific range. Such a behaviour is not observed in
the absence of lateral heating (a ¼ 0). The two solutions engender different flow
and heat transfer characteristics.

. The fluid flow and heat transfer are found to be rather sensitive to the
non-Newtonian power-law behaviour. Compared to Newtonian fluidsðn ¼ 1Þ; a
shear-thinning behaviour ð0 , n , 1Þ enhances the fluid circulation and the
convection heat transfer while the shear-thickening behaviour ðn . 1Þ produces
an opposite effect.

. The analytical results, based on the parallel flow assumption, are found to agree
well in the core region with those obtained numerically by solving the full
governing equations. There are however some portions in the anti-natural range
of the analytical solution, named unstable, which were not validated numerically
since their numerical obtaining was impossible despite the choose of favourable
initial conditions.
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